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EXPLORING SCALED AIC 

WITHIN ENGLISH CLOSED 

COMPOUNDS 

Angly kalbos uzdaryjy junginiy 

(sudurtiniu zodziy) skales AIC tyrimas 

ANNOTATION 

The Akaike Information Criterion (AIC) is an established goodness-of-fit measure for 

selecting models in the analysis of empirical data. However, AIC is sensitive to sample 

size. Author’s previous research has shown that Scaled AIC, i.e. AIC divided by sample 

size, is an effective tool for assessing model fit and hierarchizing regression models. The 

present study explores further properties of this variable. The object of investigation are 

66 multiple regression models referring to the processing of closed (concatenated) English 

compounds taken from Gagné et al.’s (2019) Large Database of English Compounds 

(LADEC). In particular, Scaled AIC is juxtaposed to the English Lexicon Project (ELP) 

and British Lexicon Project (BLP) as sources of response times, the lexical decision and 

naming tasks, compound length, and transparency norms. One-way ANOVA, main effects 

analysis, and non-parametric tests are used as methods. The findings suggest that Scaled 

AIC is responsive to experimental design, the source of response times, and the lexical 

decision and naming tasks. At the same time, the results of this study offer empirical 

support for the validation of methods employed by Gagné et al. (2019). 

KEYWORDS: English compounds, Scaled AIC, lexical decision, naming. 

ANOTACIJA 

Akaikés informacijos kriterijus (angl. AIC) yra pastovus modeliy tinkamumo matas, 

taikomas empiriniy duomeny analizei. Taciau AIC yra jautrus imties dydziui. Ankstesni 
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autoriaus tyrimai parodé, kad skalés AIC, padalytas iS imties dydzio, yra veiksminga 

priemoné modelio tinkamumui jvertinti ir regresijos modeliams hierarchizuoti. Siame 

tyrime nagrinéjamos tolimesnés Sio kintamojo ypatybés. Tyrimo objektas — 66 daugialypés 

regresijos modeliai, susije su uZdaryjy (sudurtiniy) angly kalbos junginiy, paimty i 

Gagné’és ir kity (2019) Angly kalbos sudurtiniy Zodziy (junginiy) didZiosios duomeny 

bazés (angl. LADEC), apdorojimu. Pirmiausia AIC sugretinamas su Angly kalbos zodyno 

projektu (angl. ELP) ir Brity kalbos Zodyno projektu (angl. BLP), kaip atsako laiko, leksiniy 

sprendimy ir ivardijimo uzduociy, junginiy ilgio ir skaidrumo normy Saltiniai. Naudojami 

metodai — vienpusé ANOVA (angl. Analysis of variance), pagrindiniy rezultaty analize ir 

neparametriniai testai. Isvados rodo, kad skalés AIC reaguoja i eksperimentini projekta, 

atsako laiko Saltinj ir leksiniy sprendimy bei jvardijimo uZduotis. Tuo paciu Sio tyrimo 

rezultatai suteikia empirini pagrinda Gagné’és ir kity (2019) taikomy metody patvirtinimui. 

ESMINIAI ZODZIAI: angly kalbos junginiai (sudurtiniai ZodZiai), skalés AIC, leksinis 

sprendimas, ivardijimas. 

1. THE LARGE DATABASE 
OF ENGLISH COMPOUNDS 
(LADEC: GAGNE ET AL. 2019)! 

The Large Database of English Compounds (LADEC: Gagné et al. 

2019) is the largest existing database of compound words. It contains over 

8000 nonspaced (“closed” or “concatenated”) compounds (=nouns) selected 

from various sources including, among others, the CELEX database (Baayen 

et al. 1995), the English Lexicon Project (ELP; Balota et al. 2007), the British 

Lexicon Project (BLP; Keuleers et al. 2012), the British National Corpus 

(BNC), and Wordnet. From the full set of LADEC entries, 7,804 compounds 

can be uniquely parsed into two free morphemes constituents.* A vast variety 

of compounds is considered, for instance noun-noun compounds, e.g. buttercup, 

shipyard, compounds with a second constituent derived from a verbal stem, 

e.g. pacemaker, painkiller, etc. (for definitions of compound classes see Lieber 

2004: 46). The first non-head constituent refers to a wide range of grammatical 

categories. Figure 1 contains a brief sample of LADEC entries. 

Gagné et al.’s (2019) multiple-regression models include a wide range of 

predictor (=independent) variables, such as compound length, bigram frequency 

1 This section was adopted from Chariton Charitonidis (2022) with slight alterations. 

? LADEC includes plurals of already listed compounds as separate entries. 
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at the morpheme boundary, family size, word frequency, probability and 

association (vector-based) measures, emotional/sentiment norms computed 

from participant ratings, etc. The log response times for the compounds from 

ELP (lexical decision, naming) and BLP (lexical decision) are used as dependent 

variables. For the most part, compound length (number of characters) and log 

compound (=word) frequency from the SUBTLEX-US corpus (Brysbaert, New 
2009)? and BNC (BLP) are used as control variables. In Gagné et al.’s (2019) 

models, the predictor mentioned above variables had significant effects on 

lexical decision and naming times. 

FIGURE 1. LADEC entries: sample 
  

  

  

afterlife daydreaming pacemaker 

aircraft dimwit padlock 

ashtray drawback painkiller 

backboard earthquake shipyard 

ballplayer egghead shoelace 

buttercup eyebrow shotgun 

caretaker offspring textbook 

castaway outcasts throwback 

crossfire overdrive turnaround         
  

The primary focus in Gagné et al.’s (2019) study was placed on various 
measures of semantic transparency. Gagné et al. (2019) asked participants to 
rate compounds considering how predictable the meaning of the compound is 

from its parts (meaning predictability ratings, compoundbased) and how much of 
the meaning of each of the constituents is retained in the compound (meaning 

retention ratings, constituent-based). The authors found that the distribution 

of transparencies for the second constituent was much more peaked and higher 

than the distribution of transparencies for the first constituent (Mc): 64.80 [SD: 

19.59] vs. Mc: 71.00 [SD: 16.46]. N = 8115). However, the rating for the 

3 The SUBTLEX-US corpus is a 51-million-token corpus based on subtitles from US films and 

television programs. Several recent studies have provided evidence indicating that frequency 

norms obtained from subtitles of movies and television programs tend to be more effective than 

those derived from printed texts when it comes to explaining the differences in lexical processing 

time and, in some cases, accuracy among native speakers of various languages (see Chen et al. 

2018: 2 and the references therein). 
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first constituent was more strongly correlated with the rating for the entire 

compound than was the rating for the second constituent (cl~cmp: r = 0.75, 

p < .001 vs. c2~cmp: r = 0.66, p < .001. N = 429).* Most notably, the meaning 

retention rating for the first constituent and the meaning predictability rating 

for the compound predicted all three types of response times, i.e. ELP lexical 

decision, BLP lexical decision, and ELP naming times. 

To conclude, the peaked and higher distribution of transparencies for the 

second constituent and the first constituent’s better association with the 

compound’s meaning predictability appear to be immediately mapped onto 

the head operations in English compounds. The second constituent, i.e. the 

head, is a unit whose transparency is enhanced categorially and semantically 

(as for the semantic aspect, see the relations of entailment and hyponymy). 

The first constituent, i.e. the modifier, is the most critical factor in establishing 

compound reference. As a result, its transparency covaries with the transparency 

of the compound most strongly.® 

2, AKAIKE INFORMATION CRITERION (AIC) 

In 1973, Hirotugu Akaike developed a method to estimate the relative 

expectation of Kullback-Leibler distance (Kullback 1959) using Fisher’s maximized 

log-likelihood (Fisher 1922; see also Aldrich 1997). This measure, commonly 

referred to as the Akaike Information Criterion (AIC; Akaike 1973), introduced a 

novel framework for selecting models in the analysis of empirical data, marking 

a significant paradigm shift (Burnham, Anderson 2002). 

AIC is typically calculated as follows: —2InL + 2k, in which ‘InL’ refers to 

the maximized/full log-likelihood of the model and ‘k’ refers to the number 

of parameters including the constant. A smaller set of predictors is typically 

associated with more efficient models (models with a lower information loss). 

The lower (=more negative) the AIC value, the better the fit of the model. In 

this context, AIC penalizes, as a goodness-of-fit measure, the use of a large 

number of predictors that, potentially, result in higher AIC values (see the ‘+2k’ 

part of the AIC equation). 

+ Steiger’s (1980) z test showed that this difference was significant, z = 27.71, p < .0001 (Gagné 

et al. 2019). 

> By referring to previous research, Gagné et al. (2019) report that “the modifier (the first constituent 

in English) tends to play a larger role in the ease-of-relation selection during the processing of 

compounds and noun phrases.” 
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AIC is sensitive to sample size. AICc, a corrected version of AIC, incorporates 

sample size through the formula 2k (k + 1)/(n — k — 1). However, it specifically 

addresses small sample sizes and is not recommended for models based on 

large sample sizes such as that in Gagné et al. (2019).° It should be noted that 

researchers such as Kenneth P. Burnham & David R. Anderson (2002) do not 

offer a definitive solution for comparing AIC values of models fitted on both 

different and large sample sizes.” 

In particular, Burnham & Anderson (2002: 80-85, 334-335) provide a 

comprehensive discussion of the implications of unequal sample sizes for 

model comparison. They argue that employing information criteria to compare 

models with different sample sizes can lead to misleading results. Similarly, 

Ivan Svetunkov (2016) points out that all information criteria are based on 

the likelihood function that, in turn, depends on sample size. Specifically, as 

the sample size increases, the likelihood decreases. Consequently, information 

criteria will also increase in such cases.® 

3. PREVIOUS RESEARCH 

In Charitonidis (2022) the AIC values for 44 multiple regression models with 

different combinations of emotion variables (valence, arousal, and concreteness 

for (a) words and (b) word contexts) were divided by sample size (N) to yield 

Scaled AIC (AIC/N) values.° Subsequently, these values were utilized to assess 

6 For further information on AICc, the reader is referred to Burnham & Anderson (2002: 374-380). 

7 One of the solutions that Burnham & Anderson (2002) propose refers to the transformation of the 

AIC values to “Akaike weights” that are defined as “the relative likelihood of the model, given the 

data” (Burnham, Anderson 2002: xiii; see also Wagenmakers, Farrell 2004). 

8 Availableat:https://stats.stackexchange.com/questions/947 18/model-comparison-with-aic-based- 

on-different-sample-size [accessed 16.06.2023]. The reader can comprehend Svetunkov’s 

statement by substituting different values for the ‘InL’ component in the AIC equation, while 

maintaining the ‘2k’ component constant. A decrease in the InL value will result in a higher, i.e. 

inferior, AIC value. 

° In the literature, Scaled AIC is also referred to as “mean AIC”. According to Svetunkov (personal 

communication), the practice of dividing the Akaike Information Criterion by the sample size 

is not novel. For instance, Hastie et al. (2009: 230-231) define AIC in a non-canonical manner, 

employing N as the denominator in the formula. While this deviation from the conventional 

AIC formula is not without its critics, it remains a prevalent approach, as exemplified by its 

inclusion in the statistical software package Stata. For instance, Stata reports “AIC divided by N” 

in its model output, as evidenced by various examples available online (Gratitude is extended to 

I. Svetunkov for providing this information). 
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and compare the models’ goodness-of-fit. The insertion of key predictors into 

global, i.e. general, models showed that the BLP lexical decision times called 

for a better goodness-offit than the ELP lexical decision times. The fit of the 

ELP naming models fell within the range of those observed for the ELP and 

BLP lexical decision models. Most notably, context concreteness for the second 

constituent emerged as a significant predictor in all models with SUBTLEX-US 

frequency, across lexical decision and naming. 

In Charitonidis (2024), all significant coefficients from the global models with 

SUBTLEX-US frequency were juxtaposed to the hyponymy variable (Gagné 

et al. 2020). It was found that models including both hyponymy and context 

concreteness for the second constituent were always associated with the lowest 

(=best) Scaled AIC value as compared to nested, i.e. reduced, models omitting 

either of these two variables. The subsequently applied Wald tests showed that 

nested models, always referred to a significant reduction (=deterioration) of the 

coefficient of determination (R*). Tables 1 and 2 display the Scaled AIC values 

and the results of the corresponding Wald tests, respectively. 

TABLE 1. Scaled AIC values for nested models omitting hyponymy (‘Model 2’) 

or context concreteness for the second constituent (‘Model 3’) from full 

models (‘Model 1’) to predict English Lexicon Project (ELP) lexical 

decision (LD) times, British Lexicon Project (BLP) lexical decision 

times, and ELP naming times 

Model Scaled AIC AIC N 

ELP LD 

1 -3.3628 1a -3557.85 1058 

2 -3.30375 -4169.334 1262 

3 -3.34845 -3700.038 1105 

BLP LD 

1 -3.79552 -2903.574 765 

2 -3.76618 -3920.592 1041 

3 -3.76718 -2987.37 793 

ELP naming 

1 -3.58686> -7396.108 2062 

2 -3.54304 -8418.27 2376 

3 -3.58379 -7389.784 2062 
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a. Predictors: (Constant), hyponymy judgement, length of compound, 
SUBTLEX-US frequency, representation valence (cmp), context concreteness 

(c2) 
b. Predictors: (Constant), hyponymy judgement, length of compound, 

SUBTLEX-US frequency, context valence (cmp), context arousal (cl), context 

arousal (c2), context concreteness (c2) 

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE 2. Wald tests for nested models omitting hyponymy (‘Model 2’) or context 

concreteness for the second constituent (‘Model 3’) from full models 

(‘Model 1’) to predict English Lexicon Project (ELP) lexical decision 

(LD) times, British Lexicon Project (BLP) lexical decision times, and 

ELP naming times 

Model R2 square F change dfl df2 P 

ELP LD 

1 1848 47.506 5 1052 .000 

2 -.004 4.562 1 1052 .033 

3 -.010 13.175 1 1052 .000 

BLP LD 

1 211 40.479 5 759 .000 

2 -.013 12.091 1 759 -001 

3 -.015 14.007 1 759 .000 

ELP naming 

1 2885 118.711 7 2054 .000 

2 -.003 8.286 1 2054 .004 

3 -.003 8.309 1 2054 .004                 

a. Predictors: (Constant), hyponymy judgement, length of compound, 
SUBTLEX-US frequency, representation valence (cmp), context concreteness 

(c2) 
b. Predictors: (Constant), hyponymy judgement, length of compound, 

SUBTLEX-US frequency, context valence (cmp), context arousal (cl), context 

arousal (c2), context concreteness (c2) 

In conclusion, two different effect-size measures, namely Scaled AIC and 

R2, hierarchized the same regression models identically while demonstrating 

the same preference for the best model. Thus, there is strong evidence that the 

Scaled AIC measure is a qualitative tool for assessing model fit. 
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4. THE PRESENT STUDY 

The present study builds upon the author’s previous research presented in 

section 3. The research subjects are 66 lexical decision and naming models for 

the English closed (concatenated) compounds built by Gagné et al. (2019). All 
models include SUBTLEX-US frequency as control variable. Our objectives 

are twofold and run in parallel. First, we assess the characteristics of Gagné et 

al.’s (ibid.) models. Second, we explore essential properties of the Scaled AIC 

measure. 
The research questions are: 

1. Is Scaled AIC sensitive to the model design in Gagné et al. (2019)? Which 
model groups are favoured? 

2. What is the impact of the control variables “compound frequency’ and 

‘compound length’ on Scaled AIC? 

3. How is morphological transparency related to Scaled AIC? 

Our study is structured as follows: Section 5 provides an overview of our 

methods. Section 6.1 provides descriptive statistics for Scaled AIC referring 

to the models under consideration. Emphasis is given to the parametric versus 

non-parametric characteristics of model categories. Section 6.2 explores the 

relationship between the source of response times and the lexical processing 

tasks. Section 6.3 juxtaposes Scaled AIC to the control variables ‘compound 

frequency’ and ‘compound length’. In section 6.4 the significance levels of the 

transparency coefficients from Gagné et al.’s (2019) models are mapped onto 

the Scaled AIC values. The key findings are summarized in section 7, followed 

by a discussion of the results in section 8. 

5. METHODS 

Our general method was the comparative analysis of the main parameters 

and characteristics of Gagné et al.’s (2019) models, using Scaled AIC as the 

dependent variable. Independent variables included sample characteristics (e.g. 

response time source and the lexical processing tasks), study design (e.g. control 

variables), the significance level of transparency coefficients, among others. 

The specific statistical methods employed were as follows: (a) descriptive 

statistics pertaining to means and medians, along with the application of the 

Shapiro-Wilk test to assess the central tendency, variability, and distribution 

of Scaled AIC across different model categories and groups (sections 6.1 and 

6.2), (b) main effects analyses conducted for the source of response times 

(ELP/BLP) and the lexical processing tasks (lexical decision/naming) (section 
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6.2), (c) distinct ANOVAs performed on response time source and the lexical 

processing tasks, incorporating compound length as a covariate (section 6.3), 

and (d) utilization of the Kruskal-Wallis and the Jonckheere-Terpstra tests 

to explore differences among the ranks of ordinally-recoded coefficients for 

semantic transparency (section 6.4). For more information on methods, the 

reader is referred to the analyses in sections 6.1—6.4. 

6. ANALYSES 

6.1. Scaled AIC vs. model categories 

The 66 AIC values from Gagné et al.’s (2019) multiple-regression models 

with SUBTLEX-US frequency as a control variable were divided by each 

model’s sample size to yield a set of 66 Scaled AIC values. 

Table 3 below provides the descriptive statistics for Scaled AIC and Figure 

2 displays the corresponding boxplot referring to the ordered set of values.!° 

There were no outliers in the sample. The skewness (Sk) and kurtosis (Ku) 

values were tolerable." 

The mean value for Scaled AIC was 3.50030. The standard deviation was 

0.19052, that is the observations were relatively tightly clustered around 

the mean. The minimum and maximum values were 3.85502 and -3.15754, 

respectively. The median value was 3.55732, i.e. slightly lower than the mean 

value.!? The middle 50% of the data ranged between -3.66575 (first quartile, 

Q1) and -3.30959 (third quartile, Q3). Accordingly, the interquartile range 

(IQR) was 0.35616. 

10 The lower or first quartile line of the box (Q1) marks the boundary below which the bottom 

25% of the data extends. Similarly, the upper or third quartile line of the box (Q3) marks the 

boundary above which the upper 25% of the data extends. The shaded area shows the boundaries 

of the middle 50% of the data or interquartile range (IQR), which can be computed by subtracting 

the first quartile from the third quartile (Q3-Q1). The horizontal line inside the box shows the 

median or middle quartile (Q2), i.e. the value that falls in the middle of the dataset. 

11 With reference to the SPSS environment, the values between -1 and +1 for skewness and 

between -2 and +2 for kurtosis are generally considered acceptable for normal distribution 

assessment. It is worth noting, however, that skewness and kurtosis alone do not provide a 

conclusive proof of normality (see also the discussion on https://www.researchgate.net/post/ 

What_is_the_acceptable_range_of_skewness_and_kurtosis_for_normal_distribution_of_data). 

2 In line with this pattern, there was a small amount of positive skew in the data (0.494). 
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TABLE 3. Descriptive statistics for Scaled AIC (full set) 
  

  

  

          

Mean SD Min Max 

-3.50030 0.19052 -3.85502 -3.15754 

Median IQR Ql Q3 

-3.55732 0.35616 -3.66575 -3.30959 
    

N=66. Sk=0.494, Ku=-1.101 

FIGURE 2. Distribution of Scaled AIC (full set): Boxplot 
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It was expected that the full set of Scaled AIC values would not show the 

normal distribution because they encompassed different tasks (lexical decision, 

naming) and were derived from different sources of response times (ELP, 
BLP). The Shapiro-Wilk test and the Kolmogorov-Smirnov test confirmed 

our assumptions.!* In particular, the statistics for the Shapiro-Wilk test were 

W (66) = 0.90, p < .001, and the statistics for the Kolmogorov-Smirnov test 
were D (66) = 0.17, p < .001. It should be noted that the same full set did not 

exhibit a normal distribution, even after applying the natural logarithm and the 

square root transformations to the absolute values. 

Table 4 below provides the descriptive statistics for Scaled AIC with reference 

to the main model categories in Gagné et al. (2019), ie. ELP lexical decision, 
BLP lexical decision, and ELP naming (each group contains 22 models). Figure 
3 displays the corresponding boxplots. As can be seen, the means and medians 

13 The Kolmogorov-Smirnov test applied the Lilliefors Significance Correction. 
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for BLP lexical decision and ELP naming referred to similar Scaled AIC values. 

ELP lexical decision referred to higher (=inferior) values that were, additionally, 

disjoint from the BLP lexical decision values.'4 In summary, BLP lexical decision 

and ELP naming always called for better models than ELP lexical decision. 

TABLE 4. Descriptive statistics for Scaled AIC by the main model categories 
  

  

  

  

  

  

  

  

  

  

  

          

ELP lexical BLP lexical . 

decision decision ELP naming 

Mean -3.25338 -3.62255 -3.62495 

SD 0.06605 0.06778 0.08710 

Min -3.35102 -3.75547 -3.85502 

Max -3.15754 -3.52945 -3.50150 

Median -3.27165 -3.62174 -3.61886 

IQR 0.13762 0.13704 0.13758 

Ql -3.31025 -3.68840 -3.69419 

Q3 -3.17263 -3.55136 -3.55662 

Sk 0.274 -0.097 -0.559 

Ku -1.444 -1.244 0.725 

N 22 22 22 
  

  
It was expected that the non-parametric profile of the full set of Scaled AIC 

values would be less likely to occur within the main model categories, i.e. the 

main combinations of response times and tasks. As will become apparent, this 

expectation was confirmed. 

The Shapiro-Wilk test showed that the ELP lexical decision data deviated 

significantly from normality. In particular, we calculated a test statistic of 

W (22) = 0.90, p < .05.15 

The BLP lexical decision data were normally distributed. The respective 

statistics were W (22) = 0.92, p > .05 (Shapiro-Wilk). 

14 A t-test on the summary data for ELP lexical decision and BLP lexical decision (Table 4) indicated 

a highly significant difference between sample means, t = 18.296, p < .0001. 

15 Tt should be noted that a set of six ELP lexical decision models referred to Scaled AIC values 

near the maximum value of 3.15754, indicating the poorest fit in the entire dataset. These 

models contributed to a prominent peak towards the higher end of the distribution (ranging from 

3.17304 to 3.15754), resulting in an almost bimodal distribution pattern. This observation is 

supported by a relatively high negative kurtosis value of -1.444. 
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FIGURE 3. Boxplot representations of Scaled AIC by the main model categories 
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Similarly, the ELP naming data were normally distributed. The respective 

statistics were W (22) = 0.93, p > .05 (Shapiro-Wilk). 

Summarizing, both the full set of models and the ELP lexical decision models 

were associated with a non-parametric distribution of Scaled AIC. On the other 

hand, the BLP lexical decision and ELP naming data were normally distributed. 

Let us now try to uncover the influence of individual factors on Scaled AIC. 

6.2. Scaled AIC vs. response time source and tasks 

Table 5 below contains the descriptive statistics for the Scaled AIC values 

for the groups categorized under the main factors ‘response times’ and ‘tasks’, 

i.e. (a) ELP response times, (b) BLP response times, (c) naming task and 

(d) lexical decision task. The ELP response times and the lexical decision task 
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are overarching groups referring to ‘lexical decision & naming’, and ‘ELP & 

BLP’, respectively. The groups ‘BLP’ and ‘Naming’ are identical to the model 

categories ‘BLP lexical decision’ and ‘ELP naming’, respectively that were 

already presented in Table 4 (section 6.1). Figure 4 displays the respective 

boxplot representations. 

As can be seen in Table 5, both ‘BLP’ and ‘Naming’ referred to (a) lower 

(=better) main and median values for Scaled AIC, and (b) smaller standard 

deviation (SD) and interquartile range (IQR) values, in contrast to the 

overarching groups ‘ELP response times’ and ‘lexical decision’.© The same 

overarching groups have relatively high kurtosis values, i.e. -1.403 and -1.616, 

respectively (in the histograms for these groups — not given here — two clear 

peaks emerged, similar to that for a bimodal distribution of values). These 

patterns suggest that the Scaled AIC measure was uniquely associated with the 

well-defined experimental categories BLP lexical decision (see ‘BLP’ group) 

and ELP naming (see ‘Naming’ group). 

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE 5. Descriptive statistics for Scaled AIC regarding the groups categorized 

under ‘response times’ and ‘tasks’ 

Response times Tasks 

ELP BLP Naming Lexical Decision 

Mean -3.43917 -3.62255 -3.62495 -3.43797 

SD 0.20286 0.06778 0.08710 0.19808 

Min -3.85502 -3.75547 -3.85502 -3.75547 

Max -3.15754 -3.52945 -3.50150 -3.15754 

Median -3.42626 -3.62174 -3.61886 -3.44024 

IQR 0.35152 0.13704 0.13758 0.36196 

Ql -3.62127 -3.68840 -3.69419 -3.63171 

Q3 -3.26975 -3.55136 -3.55662 -3.260975 

Sk -0.126 -0.097 -0.559 -0.006 

Ku -1.403 -1.244 0.725 -1.616 

44 22 22 44             
  

16 Lower means and medians together with smaller standard deviation and interquartile range values 

indicate greater reliability and a reduced susceptibility to outliers or extreme values. 
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FIGURE 4. Boxplot representations for Scaled AIC regarding the groups categorized 

under ‘response times’ and ‘tasks’ 
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As with the entire set of Scaled AIC values discussed in section 6.1, it was 

expected that a non-parametric profile would be apparent for the overarching 

groups ‘ELP® and ‘lexical decision’, not constrained by specific experiments. 

The normality tests confirmed our expectations. 

With reference to the Shapiro-Wilk test, the Scaled AIC data for the ELP 

group deviated significantly from normality. We calculated a test statistic of 

W (44) = 0.91, p < .01. Similarly, the Scaled AIC data for the lexical decision 

group deviated significantly from normality. We calculated a test statistic of 

W (44) = 0.89, p < .001. 

Let us now proceed to the main effects analysis. The primary objective was to 

ascertain whether the BLP lexical decision and the ELP naming groups continue 

to predict better models when controlling for the effects of either group. 

In the statistical tests to follow, the groups categorized under the main factors 

‘response times’ and ‘tasks’ were assigned nominal values. The Scaled AIC mean 

for the BLP group, i.e. 3.623, was used as the reference cell or intercept. 

The results showed that both response times and tasks had a main effect on 

Scaled AIC, but there was no interaction. In particular, there was a significant 

main effect of response times, F (1, 63) = 271.87, p < .001. In regression terms, 

the coefficient for ELP predicted higher, i.e. inferior, Scaled AIC value, b = 

0.37, SE = 0.02, t = 16.49, p < .001. In addition, there was a significant main 

effect of tasks, F (1, 63) = 275.42, p < .001. In regression terms, the coefficient 

for naming predicted a lower, i.e. better, Scaled AIC value, b = 0.37, SE = 0.02, 

t = -16.60, p < .001. 

Figure 5 provides an overview of the main effects by means of a point 

and line plot. The intercept or reference cell refers to both the lowest ELP 

naming and highest BLP lexical decision value, i.e. 3.623. The lines are stacked 

286 Acta Linguistica Lithuanica XC



Exploring Scaled AIC within English Closed Compounds 

vertically because the ranges of Scaled AIC values for ELP lexical decision and 

BLP lexical decision were disjoint (see Table 4). On top of this, the lines are 

parallel because the absence of a ‘BLP naming’ group within tasks eliminated 

any interaction effects. 

In summary, the BLP response times and the naming task persistently 

predicted better-scaled AIC values, even after mutually controlling for relevant 

factors. These findings enhance the accuracy and effectiveness of the respective 

models. 

FIGURE 5. Main effects plot for Scaled AIC 
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It should be noted that the main effects analysis presented in this section is 

more applicable to the source of response times than task performance because, 

as already mentioned, the combination ‘BLP naming’ was not available. This 

fact can limit the generalizability of the results beyond the specific samples. 

6.3. Scaled AIC vs. control variables 

In this section, the emphasis will be placed on the control variables compound 

length (in characters) and SUBTLEX-US frequency, i.e. the log compound 
frequency derived from the SUBTLEX-US corpus (Brysbaert, New 2009). 
Both variables were extensively used in Gagné et al.’s (2019) regression models. 
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To detect the influence of compound length and compound frequency on 

Scaled AIC, the respective regression coefficients were recoded into ordinal 

values according to their positivity and significance level, see Table 6. The 

significance levels were mapped onto ordinal scales because they represented 

conventional cut-off points based on the exact significance values. 

TABLE 6. Ordinal recoding chart for regression coefficients 
  

  

  

  

  

  

  

  

Significance Positivity Ordinal values Description 

p < .001 negative -3 large negative effect 

p< .01 negative -2 moderate negative effect 

p < .05 negative -1 small negative effect 

p> .05 negative/positive 0 non-significant effect 

p < .05 positive 1 small positive effect 

p< .01 positive 2 moderate positive effect 

p < .001 positive 3 large positive effect             
In Gagné et al.’s (2019) models, SUBTLEX-US frequency was always 

associated with negative (=latency-reducing) coefficients with a large effect, p < 

.001. Accordingly, all coefficients were recoded as -3, a value that was perfectly 

collinear with the outcome variable, Scaled AIC. For this reason, SUBTLE X-US 

frequency was excluded from the present analysis. 

As for compound length, all significant regression coefficients from Gagné et 

al.’s (2019) models had a large positive (=latency-inducing) effect, p < .001. 

In contrast to the SUBTLEX-US variable, several non-significant coefficients 

showed up. Given these patterns, a categorical variable was created with the 

values ‘1’ for positive effect (=interference of compound length) and ‘0’ for no 

effect (=no interference of compound length). The resulting sample contained 

39 Scaled AIC values. The Pearson correlation test between compound length 

and Scaled AIC yielded a highly significant correlation coefficient of 0.51, p = 

.001, indicating a moderate-to-strong correlation between the two variables. 

Compound length was included as a single independent variable in a linear 

regression model. It was found that the predicted Scaled AIC mean for no 

interference of compound length was 3.611 (=the intercept). The interference 

of compound length resulted in a higher (=inferior) value of -3.407 (b = 0.204, 

p = .001). Figure 6 below illustrates these patterns. In a nutshell, Scaled AIC 

deteriorates when compound length becomes relevant within models. 
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FIGURE 6. Compound length and Scaled AIC 
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We conducted separate ANOVAs for response time source (ELP/BLP) and 
task performance (lexical decision/naming), taking into account compound 

length as a covariate. The primary objective was to identify disparities in 

means that were previously adjusted to accommodate the controlling effects of 

compound length. 

(a) ANOVA for response time source. BLP was assigned the value ‘0’ and 
ELP was assigned the value ‘1’. The Pearson correlation test revealed a strong 

collinearity between response time source and compound length, r= 1(N = 39). 
The following evidence supports our finding: First, the ELP group consistently 

showed significant positive correlations with compound length, indicating a 

large effect. Second, the BLP group consistently displayed non-significant 

correlations with compound length.!7 Consequently, the predicted Scaled AIC 

mean for response time source was the same with or without compound length 

in the analysis (M = 3.407 in both cases). In summary, compound length did 
not have a significant effect on Scaled AIC when the response time source was 

included. 

(b) ANOVA for task performance. Naming was assigned the value ‘0’ and 
lexical decision was assigned the value ‘1’. The Pearson correlation test revealed 

a negative correlation between task and compound length, indicating a moderate 

effect, r = -.5, p = .001 (N = 39). This result suggests that compound length is 
more relevant to naming than to lexical decision. 

17 Tt should be noted that 11 of the 13 BLP coefficients were negative. 
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When considering task as the primary variable, compound length was a 

significant predictor of Scaled AIC, F (1, 145.030), p = .000. Similarly, when 
considering compound length as the primary variable, task was a significant 

predictor of Scaled AIC, F (1, 125.30), p = .000. The predicted Scaled AIC mean 
for task alone was significantly different from the predicted Scaled AIC mean 

when compound length was taken into account (3.584 vs. 3.203, respectively). 

Likewise, the predicted Scaled AIC mean for compound length alone (3.584) 
was significantly different from the predicted Scaled AIC mean when the task 

was taken into account (-3.23). Summarizing, in terms of covariate adjustment, 
both the lexical decision task and compound length predicted inferior models. 

6.4. Scaled AIC vs. transparency norms 

This section investigates the effect of regression coefficients for semantic 

transparency in Gagné et al. (2019) models on Scaled AIC. These regression 

coefficients were coded on three ordinal scales, each corresponding to one of 

the three morphological levels, i.e. compound, first constituent, and second 

constituent. The ordinal recoding chart can be found in Table 6. 

Table 7 below displays the medians and ranges of the ordinally-transformed 

transparency coefficients for all three morphological levels. The medians 

provide useful information about the central tendency and dispersion of ordinal 

values and can help inform analyses based on ordinal variables. 

TABLE 7. Ordinally-transformed transparency coefficients: Medians and ranges 
  

  

  

  

Median Minimum Maximum 

Compound -3 -3 -1 

First constituent -3 3 

Second constituent -2 3             
N=18 

As can be seen, the median for the compound was ‘-3’, the median for the 

first constituent was ‘2’, and the median for the second constituent was ‘0’. 

These findings suggest that in Gagné et al.’s (2019) models with SUBTLEX-US 
frequency, transparency for the compound was associated with a large 

negative effect (shorter response times), transparency for the first constituent 

was associated with a moderate positive effect (longer response times), and 

transparency for the second constituent did not have a significant effect or had 
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an uncertain role. The higher transparency ratings for the second constituent, 

reported by Gagné et al. (ibid.), suggest an inherent bias favouring it, leading to 

the overall transparency of the compound being dependent on the transparency 

of the first constituent. In this context, the positive, latency-inducing, median 

for the first constituent indicates its mediating, perhaps reference-establishing, 

role in this relationship (see also section 1). It remains to be demonstrated 

which are the semantic functions that sufficiently represent, in processing terms, 

the inherent bias of the second constituent.'* 

The research question to be addressed now is whether the positivity and 

significance level of transparency coefficients influence Scaled AIC. Our 

method primarily aims at detecting overfitting effects. As Daniel J. Navarro 

& Jay I. Myung (2005) argue, overfitting occurs when “a complex model with 
many parameters and highly nonlinear form can often fit data better than a 

simple model with few parameters even if the latter generated the data” 

(Navarro, Myung 2005: 1240). Accordingly, a large number of parameters have 

the potential to capture noise or unique characteristics of the available data but 

may hinder the model’s ability to generalize to new data. AIC mitigates the issue 

of overfitting by introducing a penalty on the inclusion of numerous parameters 

in a model, see the ‘-2k’ part of the AIC equation in section 2. 

Regarding the analysis to follow, it is postulated that models exhibiting higher 

(=inferior) Scaled AIC values may possess significant, systematically derived, 

coefficients, i.e. coefficients that are relevant according to the LADEC dataset 

alone. In this context, our conjecture suggests that a contrasting trend might 

emerge in the connection between transparency and Scaled AIC, as compared 

to the indication provided by the medians in Table 7. 

In particular, lower (=better) Scaled AIC values may be associated with 

(a) positive coefficients (longer response times) concerning the whole 
compound, (b) negative coefficients (shorter response times) concerning the 
first constituent, and (c) positive or negative coefficients (longer or shorter 
response times, respectively) concerning the second constituent. It should be 

noted that, regarding the second constituent, the median in Table 7 suggests no 

effect.Formularbeginn 

To answer the research question, two non-parametric measures will be 

employed, i.e. the Kruskal-Wallis test and the Jonckheere-Terpstra test. The 

Kruskal-Wallis test, also known as the ‘H test’, is a non-parametric test based on 

18 In Charitonidis (2024) it is argued that both hyponymy and context concreteness for the second 

constituent are significant semantic predictors in lexical decision and naming. The analysis 

presented therein shows that including both of these predictors results in an improvement in 

Scaled AIC and R? as compared to models that omit either of these variables. 

Straipsniai / Articles 291



CHARITON CHARITONIDIS 

the chi-square distribution. It requires that the dependent variable be ordinal 

or continuous. This test is designed to determine whether there are significant 

differences between the medians of two or more groups and is used as an 

alternative to one-way ANOVA. Concerning the procedure, the values of the 

continuous dependent variable, i.e. Scaled AIC, were ordered from lowest to 

highest and the scores were assigned ranks. The resulting ranks were entered 

back into the groups of significance level (the independent variable) and the 

ranks for each group were summed. The formula for calculating ‘H’ involved, 

among others, squaring the sum of ranks for each group and then dividing this 

value by sample size.!° Tables 8—10 contain the input data considered and the 

sum of ranks for each group.”° 

TABLE 8. Compound 

  

  

  

  

            
  

  

  

  

  

  

  

  

  

  

Significance levels N | Sum of Ranks 

Scaled |} 1 — small negative effect 1 2 

AIC 2 — moderate negative effect 5 46 

3 — large negative effect 12 123 

Total 18 

TABLE 9. First constituent 

Significance levels N | Sum of Ranks 

Scaled | 1 — large positive effect 6 59 

AIC 2 — moderate positive effect 4 34 

3 — small positive effect 1 

4 — no effect 1 2 

5 — small negative effect 1 10 

6 — moderate negative effect 1 11 

7 — large negative effect 4 52 

Total 18           
  

19 For the rest of calculations see Field (2009: 561-562). 

20 In all three tables, the total sum of ranks is approximately 171. It is equal to the sum of the integers 

from 1 to 18, see sample size (N). 
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TABLE 10. Second constituent 

  

  

  

  

  

  

    

Significance levels N | Sum of Ranks 

Scaled | 1 — large positive effect 6 59 

AIC 2 — small positive effect 1 14 

3 — no effect 8 59 

4 — small negative effect 1 18 

5 — moderate negative effect 2 21 

Total 18         
  

Before delving into the results of the Kruskal-Wallis (H) test, it is important 

to note that this test does not provide information about the specific differences 

between individual groups. To address this issue, the Jonckheere-Terpstra (JT) 

test was additionally employed. This test provided information about whether 

the medians of the groups increased or decreased in the order specified by 

the coding (=grouping) variable, specifically from large positive effect to large 

negative effect. Regarding methods, the JT statistic was converted into a z-score. 

A positive z-value indicated a trend of ascending medians, that is the medians 

increased (=higher/inferior Scaled AIC) as the values of the coding variable 

increased. A negative z-value indicated a trend of descending medians, that is 

the medians decreased (=lower/better Scaled AIC) as the values of the coding 

variable increased. In the following, the results of the Kruskal-Wallis (H) and 

Jonckheere-Terpstra (JT) tests are given jointly. 

(a) Scaled AIC for the compound was not significantly affected by significance 

level, as determined by the Kruskal-Wallis test (H (2) = 2.226, p > .05). A trend 

of ascending medians was found confirming our overfitting hypothesis, see the 

negative median for the compound in Table 7. This trend, however, was not 

statistically significant according to the Jonckheere-Terpstra test (JT = 50, z = 

1.064, p > .05). 

(b) Scaled AIC for the first constituent was not significantly affected by 

significance level, as determined by the Kruskal-Wallis test (H (6) = 5.427, 

p > .05). A trend of ascending medians was found rejecting our overfitting 

hypothesis, see the positive median for the first constituent in Table 7. This 

trend, however, was not statistically significant according to the Jonckheere- 

Terpstra test (JT = 70, z = 0.549, p > .05). 

(c) Scaled AIC for the second constituent was not significantly affected by 

significance level, as determined by the Kruskal-Wallis test (H (4) = 4.607, p > 

.05). A trend of ascending or descending medians was not observed, rejecting 
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our overfitting hypothesis. In particular, the z-statistic of the Jonckheere- 

Terpstra test was essentially zero, in accordance with the zero median for the 

second constituent in Table 7 (JT = 54, z = 0.041, p > .05). 
Summarizing, it can be inferred that the significance level of the transparency 

coefficients in Gagné et al.’s (2019) models with SUBTLEX-US frequency does 

not affect the magnitude of Scaled AIC. This finding indirectly supports the 

quality of Gagné et al.’s (2019) models with transparency predictors, specifically 

indicating that the overfitting hypothesis for these models is not tenable. A 

limitation of the present study is the small sample size used, with N = 18. To 

confirm our findings, more research is needed using a wider range of Scaled 

AIC values. 

To ensure clarity and completeness in presenting our research outcomes, we 

have incorporated a dedicated section focused on summarizing the key findings 

of our study. For this comprehensive overview, please continue to Section 7. 

7. KEY FINDINGS 

Table 11 below presents a comprehensive analysis of model performance 

and relevant variables in the context of lexical decision and naming tasks, 

based on the findings of Gagné et al. (2019). Each section of the table delves 

into specific subjects, revealing which models are most effective. The ANOVA 

and the Kruskal-Wallis/Jonckheere-Terpstra tests (sections 6.3 and 6.4) were 

applied after assigning nominal (ordinal or categorical) values to the regression 

coefficients from Gagné et al’s (2019) models. For details on the special tests 

applied, please refer to the respective sections. 

  

  

  

TABLE 11. Scaled AIC within English closed compounds: Comprehensive analysis 

of model performance in lexical decision and naming tasks (Gagné et al. 

2019) 

Subjects Statistics Evaluation Section 

Model categories | Descriptives ELP lexical decision  NPAR/~ 

Normality tests | BLP lexical decision PAR// 6.1 

ELP naming PAR/V 

Response time Main effects ELP lexical decision ~ 

source BLP lexical decision Vv 
. . . 6.2 

Lexical processing ELP naming Vv 

task             
294 Acta Linguistica Lithuanica XC



Exploring Scaled AIC within English Closed Compounds 

  

  

  

Subjects Statistics Evaluation Section 

Control variables | ANOVA Compound JV 

frequency 6.3 

Compound length ~ 

Semantic Kruskal-Wallis | First constituent NOF/ns 

transparency Jonckheere- Second constituent | NOF/ns 6.4 

Terpstra Compound NOF/ns             
PAR: parametric data | NPAR: non-parametric data | WV: better models 

(lower AIC) ~: inferior models (higher AIC) | NOF/ns: no overfitting/non- 

significant test 

8. DISCUSSION 

Previous research by Charitonidis (2022, 2024) has demonstrated that 

Scaled AIC is a reliable goodness-of-fit measure that can be employed in model 

selection, perhaps in cooperation with other measures such as the Wald test (see 

section 3). With reference to Gagné et al.’s (2019) multiple-regression models 

with SUBTLEX-US frequency, the present analysis introduced additional 

properties of the Scaled AIC measure. While valid concerns have been raised 

regarding the comparison of models fitted on different sample sizes using 

information criteria (see section 2), the findings of this study suggest that in 

certain contexts, Scaled AIC can indeed be a valuable tool for assessing model 

fit and hierarchizing regression models. Our research has demonstrated that 

Scaled AIC is responsive to experimental design, response time sources, and 

specific tasks. However, it is essential to recognize that the applicability of 

Scaled AIC may be context-dependent, and its utility should be evaluated on 

a case-by-case basis. 

Before proceeding to the primary findings of this paper, it is important to 

address the research questions set up in section 4. 

1. The distributions of Scaled AIC values, along with combinations of 

different sources of response times and processing tasks, suggest that Scaled 

AIC effectively identifies the presence or absence of well-defined underlying 

factors in experimental design and statistical modelling. In this context, BLP 

lexical decision and ELP naming exhibited stronger predictive power for Scaled 

AIC even under controlled conditions. 

2. Compound frequency was unexceptionally a negative predictor of Scaled 

AIC, always indicating a large effect. ELP lexical decision consistently showed 
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significant positive correlations with compound length predicting higher 

(=inferior) Scaled AIC values. BLP lexical decision consistently showed non- 

significant correlations with compound length. Both lexical decision and 

compound length predicted inferior models in covariate adjustment. 

3. The positivity and the significance level of transparency coefficients in 

Gagné et al.’s (2019) models did not affect the magnitude of Scaled AIC. This 
finding implies that Gagné et al.’s (2019) models with transparency predictors 
do not introduce overfitting bias. 

By referencing specific sections of the analyses, the primary findings of this 

study can be summarized as follows: 

In Section 6.1, our analysis focused on the comparison between Scaled AIC 

values across various model categories. Even after attempting the transformations 

‘natural logarithm’ and ‘square root’ on the absolute values, the overall Scaled 

AIC sample did not conform to a normal distribution. Similarly, the ELP 

lexical decision models showcased a non-parametric distribution of their Scaled 

AIC values. On the contrary, the data related to BLP lexical decision and ELP 

naming followed a normal distribution pattern. 

In Section 6.2, our focus shifted to examining the relationship between 

Scaled AIC and (a) the sources of response times and (b) task performance. 

Interestingly, the ranges of Scaled AIC values for the ELP and BLP lexical 

decision models did not overlap, signifying their distinctiveness. The test 

results revealed significant main effects of both response time source and task 

performance on Scaled AIC. Notably, the predictive capability of Scaled AIC 

was better for models associated with the BLP lexical decision times and the 

naming task. These findings contribute to the precision and efficacy of the 

respective models significantly. 

In Section 6.3, our exploration delved into the relationship between Scaled 

AIC and the control variables ‘compound frequency’ and ‘compound length’. 

Compound frequency was excluded from the analysis because it was perfectly 

collinear with Scaled AIC. On the other hand, a decline in Scaled AIC values 

was observed when compound length became a relevant factor within models. 

Concomitantly, compound length was most relevant for the naming task. 

In terms of covariate adjustment, both the lexical decision task and compound 

length were predictive of inferior models. 

In Section 6.4, our focus was placed on the relationship between Scaled AIC 

and semantic transparency. The research question was whether the positivity 

and the significance level of transparency coefficients in Gagné et al.’s (2019) 

models had an impact on Scaled AIC. The primary goal of our method was 

to detect potential overfitting effects. We postulated that models with inferior 

Scaled AIC values might possess significant coefficients that hold relevance 
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according to the LADEC dataset alone. While we observed a trend of increasing 

(=inferior) Scaled AIC values for a cluster of significant negative coefficients at 

the compound level — aligning with our overfitting hypothesis — the Jonckheere- 

Terpstra test showed that this trend did not achieve statistical significance. 

In conclusion, the exploration of different parameters using Scaled AIC as a 

dependent variable has illuminated the diverse ways in which model categories, 

response time source, processing tasks, control variables, and semantic 

transparency impact the goodness-of-fit of models. By recognizing the nuanced 

relationships among these elements, researchers are better equipped to make 

informed decisions in model selection, adjustments, and interpretation. 
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Angly kalbos uzdaryjy junginiy 

(sudurtiniu zodziy) skales AIC tyrimas 

SANTRAUKA 

Siame tyrime nagrinéjamos modifikuotos Akaikés informacijos kriterijaus, pavadinto 

skalés kriterijumi, t. y. AIC, kaip tinkamumo rodiklio, padalinto is imties dydzio, varianto 

ypatybés. Tyrimo objektas — 66 daugialypés regresijos modeliai, susije su uzdaryjy 

(sudurtiniy) angly kalbos Zodziy junginiy, paimty i8 Gagné’és ir kity (2019) Angly kalbos 

sudurtiniy Zodziy (junginiy) didziosios duomeny bazés (angl. LADEC), apdorojimu. 

Toliau pateikiami iSsamios analizés rezultatai: 

1. Modeliy kategorijy modeliai pasizymi nevienareiksmiais rezultatais. Brity kalbos 

zodyno projekto (angl. BLP) leksiniy sprendimy modeliai ir Angly kalbos Zodyno 

projekto (angl. ELP) ivardijimo modeliai veikia geriau (tai rodo mazesnis AIC), 

palyginus su Angly kalbos Zzodyno projekto (angl. ELP) leksiniy sprendimy 

modeliais. 
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Laiko Saltinio ir leksikos apdorojimo uzduociy atsakymas atskleidzia reikSmingus 

pagrindinius skalés AIC rezultatus. Brity kalbos Zodyno projekto leksiniy 

sprendimy modeliai ir Angly kalbos zodyno projekto jvardijimo modeliai veikia 

gerai, o pastarojo projekto leksiniy sprendimy modeliai yra maziau veiksmingi. 

Ivertinus kontrolinius kintamuosius, tokius kaip junginiy daznumas ir junginiy 

ilgis, matyti, kad modeliy rezultatyvumas skiriasi. Junginiy daznumas yra stiprus 

veiksnys (parodo didesnis produktyvumas), 0 sudétinio ilgio modeliy prognozés 

blogesnés. 

Kalbant apie pirmosios ir antrosios zodZiy junginiy sudedamyjy daliy, taip pat ir 

apie junginiy semantinj skaidruma, modeliai nerodo per didelio suderinamumo. 

Tai parodo, kad semantinis skaidrumas nesumazina modeliy galéjimo apibendrinti 

naujus duomenis. 
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